What is Laser Beam Welding? – Complete Explanation

Laser Beam Welding is a fusion welding process in which two metal pieces are joined together by the use of a laser. The laser beams are focused on the cavity between the two metal pieces to be joined. The laser beams have enough energy and when they strike the metal pieces produce heat that melts the material from the two metal pieces and fills the cavity. After cooling a strong weld is formed between the two pieces.

It is a very efficient welding process and can be automated with robotics machinery easily. This welding technique is mostly used in the automotive industry.

Working Principle

It works on the principle that when electrons of an atom get excited by absorbing some energy. And then after some time when it returns back to its ground state, it emits a photon of light. The concentration of this emitted photon is increased by stimulated emission of radiation and we get a high energy concentrated laser beam.

Light amplification by stimulated emission of radiation is called laser.

Main Parts

The main parts or equipment of laser beam welding are:

  1. Laser Machine: It is a machine that is used to produce a laser for welding. The main components of the laser machine are shown below.
  2. Power Source: A high voltage power source is applied across the laser machine to produce a laser beam.
  3. CAM: It is a computer-aided manufacturing in which the laser machine is integrated with the computers to perform the welding process. All the controlling action during the welding process by laser is done by CAM. It speeds up the welding process to a greater extent.
  4. CAD: It is called as Computer-aided Design. It is used to design the job for welding. Here computers are used to design the workpiece and how the welding is performed on it.
  5. Shielding Gas: A shielding gas may be used during the welding process in order to prevent the w/p from oxidation.

Also Read: 

Types of Laser Used

1. Gas lasers:

It uses mixtures of gases as a lasing medium to produce laser. Mixtures of gases such as nitrogen, helium, and co2 are used as the lasing medium.

2. Solid-state laser:

it uses several solid media such as synthetic ruby crystal (chromium in aluminum oxide), neodymium in glass (Nd: glass), and neodymium in yttrium aluminum garnet (Nd-YAG, most commonly used).

3. Fiber laser:

The lasing medium in this type of laser is the optical fiber itself.

Characteristics of Laser Beam Welding

  1. The power density of laser beam welding is high. It is of the order 1 MW/cm2. Because of this high energy density, it has small heat-affected zones. The rate of heating and cooling is high.
  2. The laser beams produced are coherent ( having the same phase) and monochromatic ( i.e. having the same wavelength).
  3. It is used to weld smaller sizes spots, but the spot sizes can vary from .2mm to 13 mm.
  4. The depth of penetration of the LBW depends upon the amount of power supply and the location of the focal point. It is proportional to the amount of power supply. When the focal point is kept slightly below the surface of the workpiece, the depth of penetration is maximized.
  5. Pulsed or continuous laser beams are used for welding. Thin materials are welded by using millisecond pulses and continuous laser beams are used for deep welds.
  6. It is a versatile process because it is capable of welding carbon steel, stainless steel, HSLA steel, aluminum, and titanium. Due to the high cooling rate, the problem of cracking is there when welding high-carbon steels.
  7. It produces high-quality welds.
  8. This welding process is most popular in the automotive industry.

Working of Laser Beam Welding

Laser Beam Welding
  • First, the setup of welding machine at the desired location (in between the two metal pieces to be joined) is done.
  • After setup, a high voltage power supply is applied to the laser machine. This starts the flash lamps of the machine and it emits light photons. The energy of the light photon is absorbed by the atoms of ruby crystal and electrons get excited to their higher energy level. When they return back to their ground state (lower Energy state) they emit a photon of light. This light photon again stimulates the excited electrons of the atom and produces two photons. This process keeps continue and we get a concentrated laser beam.
  • This high concentrated laser beam is focused to the desired location for the welding of the multiple pieces together. Lens is used to focus the laser to the area where welding is needed. CAM is used to control the motion of the laser and workpiece table during the welding process.
  • As the laser beam strikes the cavity between the two metal pieces to be joined, it melts the base metal from both the pieces and fuses them together. After solidification, we get a strong weld.
  • This is how a laser Beam Welding Works.

For a Better Explanation Watch the Video Given Below:


  • It produces high weld quality.
  • LBW can be easily automated with robotic machinery for large volume production.
  • No electrode is required.
  • No tool wears because it is a non-contact process.
  • The time taken for welding thick section is reduced.
  • It is capable of welding in those areas which are not easily accessible.
  • It has the ability to weld metals with dissimilar physical properties.
  • It can be weld through air and no vacuum is required.
  • X-Ray shielding is not required as it does not produce any X-Rays.
  • It can be focused on small areas for welding. This is because of its narrower beam of high energy.
  • A wide variety of materials can be welded by using laser beam welding.
  • It produces a weld of aspect ratio (i.e. depth to width ratio) of 10:1.


  • The initial cost is high. The equipment used in LBW has a high cost.
  • High maintenance cost.
  • Due to the rapid rate of cooling, cracks may be produced in some metals.
  • High-skilled labor is required to operate LBW.
  • The welding thickness is limited to 19 mm.
  • The energy conversion efficiency in LBW is very low. It is usually below 10 %.


Laser beam welding is dominant in the automotive industry. It is used in the area where large volume production is required.

Leave a Comment

Your email address will not be published. Required fields are marked *